Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
J Clin Microbiol ; 60(7): e0026122, 2022 07 20.
Article in English | MEDLINE | ID: covidwho-1909573

ABSTRACT

Laboratory tests for the accurate and rapid identification of SARS-CoV-2 variants can potentially guide the treatment of COVID-19 patients and inform infection control and public health surveillance efforts. Here, we present the development and validation of a rapid COVID-19 variant DETECTR assay incorporating loop-mediated isothermal amplification (LAMP) followed by CRISPR-Cas12 based identification of single nucleotide polymorphism (SNP) mutations in the SARS-CoV-2 spike (S) gene. This assay targets the L452R, E484K/Q/A, and N501Y mutations, at least one of which is found in nearly all major variants. In a comparison of three different Cas12 enzymes, only the newly identified enzyme CasDx1 was able to accurately identify all targeted SNP mutations. An analysis pipeline for CRISPR-based SNP identification from 261 clinical samples yielded a SNP concordance of 97.3% and agreement of 98.9% (258 of 261) for SARS-CoV-2 lineage classification, using SARS-CoV-2 whole-genome sequencing and/or real-time RT-PCR as test comparators. We also showed that detection of the single E484A mutation was necessary and sufficient to accurately identify Omicron from other major circulating variants in patient samples. These findings demonstrate the utility of CRISPR-based DETECTR as a faster and simpler diagnostic method compared with sequencing for SARS-CoV-2 variant identification in clinical and public health laboratories.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , COVID-19 Testing , CRISPR-Cas Systems , Clinical Laboratory Techniques/methods , Humans , Mutation , SARS-CoV-2/genetics , Sensitivity and Specificity
2.
Nat Biotechnol ; 38(7): 870-874, 2020 07.
Article in English | MEDLINE | ID: covidwho-74244

ABSTRACT

An outbreak of betacoronavirus severe acute respiratory syndrome (SARS)-CoV-2 began in Wuhan, China in December 2019. COVID-19, the disease associated with SARS-CoV-2 infection, rapidly spread to produce a global pandemic. We report development of a rapid (<40 min), easy-to-implement and accurate CRISPR-Cas12-based lateral flow assay for detection of SARS-CoV-2 from respiratory swab RNA extracts. We validated our method using contrived reference samples and clinical samples from patients in the United States, including 36 patients with COVID-19 infection and 42 patients with other viral respiratory infections. Our CRISPR-based DETECTR assay provides a visual and faster alternative to the US Centers for Disease Control and Prevention SARS-CoV-2 real-time RT-PCR assay, with 95% positive predictive agreement and 100% negative predictive agreement.


Subject(s)
Betacoronavirus/isolation & purification , CRISPR-Cas Systems , Clinical Laboratory Techniques , Nucleic Acid Amplification Techniques/methods , Betacoronavirus/genetics , COVID-19 , COVID-19 Testing , COVID-19 Vaccines , Coronavirus Infections/diagnosis , Coronavirus Infections/virology , Humans , Pandemics , Pneumonia, Viral/diagnosis , Pneumonia, Viral/virology , RNA, Guide, Kinetoplastida/genetics , SARS-CoV-2 , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL